Line Detection by Hough transformation

09gr820

April 20, 2009

1 Introduction

When images are to be used in different areas of image analysis such as object recognition,
it is important to reduce the amount of data in the image while preserving the important,
characteristic, structural information. Edge detection makes it possible to reduce the amount
of data in an image considerably. However the output from an edge detector is still a image
described by it’s pixels. If lines, ellipses and so forth could be defined by their characteristic
equations, the amount of data would be reduced even more. The Hough transform was originally
developed to recognize lines [5], and has later been generalized to cover arbitrary shapes [3] [1].
This worksheet explains how the Hough transform is able to detect (imperfect) straight lines.

2 The Hough Space

2.1 Representation of Lines in the Hough Space

Lines can be represented uniquely by two parameters. Often the form in Equation 1 is used
with parameters a and b.

y=a-x+0b (1)

This form is, however, not able to represent vertical lines. Therefore, the Hough transform uses
the form in Equation 2, which can be rewritten to Equation 3 to be similar to Equation 1.
The parameters 6 and r is the angle of the line and the distance from the line to the origin
respectively.

r=x-cosf+y-sinf (2)
B cos 0 . r (3)
y= sin 6 . sin 0

All lines can be represented in this form when 6 € [0,180[and € R (or 6 € [0,360[and r > 0).
The Hough space for lines has therefore these two dimensions; 6 and 7, and a line is represented
by a single point, corresponding to a unique set of parameters (6p, ro). The line-to-point mapping
is illustrated in Figure 1.

Mapping

Line

Figure 1: Mapping of one unique line to the Hough space.

2.2 Mapping of Points to Hough Space

An important concept for the Hough transform is the mapping of single points. The idea is,
that a point is mapped to all lines, that can pass through that point. This yields a sine-like line
in the Hough space. The principle is illustrated for a point py = (40, 30) in Figure 2.

-80 -60 -40 -20 0 20 40 60 80
]

(a) Point po. (b) All possible lines through po repre-
sented in the Hough space.

Figure 2: Transformation of a single point (py) to a line in the Hough space. The Hough space line
represents all possible lines through pg.

3 Algorithm
The algorithm for detecting straight lines can be divided into the following steps:

1. Edge detection, e.g. using the Canny edge detector [2].
2. Mapping of edge points to the Hough space and storage in an accumulator.

3. Interpretation of the accumulator to yield lines of infinite length. The interpretation is
done by thresholding and possibly other constraints.

4. Conversion of infinite lines to finite lines.

The finite lines can then be superimposed back on the original image. The Hough transform
itself is performed in point 2, but all steps except edge detection is covered in this worksheet.

3.1 Transformation to Hough Space

The Hough transform takes a binary edge map as input and attempts to locate edges placed as
straight lines. The idea of the Hough transform is, that every edge point in the edge map is
transformed to all possible lines that could pass through that point. Figure 2 illustrates this for
a single point, and Figure 3 illustrates this for two points.

10 20 30 40 50 60 70 80 -80 -60 -40 -20 0 20 40 60 80
x]

(a) Points pg and pi. (b) All possible lines through po and/or
p1 represented in the Hough space.

Figure 3: Transformation of two points (po and p1) to two lines in the Hough space. The intersection
of the Hough space lines indicates the line that pass through both py and p1.

A typical edge map includes many points, but the principle for line detection is the same as
illustrated in Figure 3 for two points. Each edge point is transformed to a line in the Hough
space, and the areas where most Hough space lines intersect is interpreted as true lines in the
edge map.

3.1.1 The Hough Space Accumulator

To determine the areas where most Hough space lines intersect, an accumulator covering the
Hough space is used. When an edge point is transformed, bins in the accumulator is incremented
for all lines that could pass through that point. The resolution of the accumulator determines
the precision with which lines can be detected. In this worksheet a resolution of 1 pixel for r
and 1 degree for 6 has been used.

In general, the number of dimensions of the accumulator corresponds to the number of unknown
parameters in the Hough transform problem. Thus, for ellipses a 5-dimensional space is required
(the coordinates of its center, the length of its major and minor axis, and its angle). For lines 2
dimensions suffice (r and #). This is why it is possible to visualize the content of the accumulator.

3.2 Detection of Infinite Lines

Infinite lines are detected by interpretation of the accumulator when all edge points has been
transformed. An example of the entire line detection process is shown in Figure 4.

The most basic way the detect lines is to set some threshold for the accumulator, and interpret
all values above the threshold as a line. The threshold could for instance be 50% of the largest

(a) Original (b) Edges (c) Infinite Lines (d) Finite Lines

-80 -60 -40 -20 0 20 40 60 80
6

(e) Hough Transform

Figure 4: Line detection using the Hough transformation. The lines detected in the source image (Figure
4a) are marked with white boxes in the Hough transform (Figure 77.

value in the accumulator. This approach may occasionally suffice, but for many cases additional
constraints must be applied. As it is obvious from Figure 4e, several entrances in the accumulator
around one true line in the edge map will have large values. Therefore a simple threshold has a
tendency to detect several (almost identical) lines for each true line. To avoid this, a suppression
neighborhood can be defined, so that two lines must be significantly different before both are
detected.

3.3 Finite Lines

The classical Hough transform detects lines given only by the parameters » and 6 and no infor-
mation with regards to length. Thus, all detected lines are infinite in length. If finite lines are
desired, some additional analysis must be performed to determine which areas of the image that
contributes to each line. Several algorithms for doing this exist. One way is to store coordinate
information for all points in the accumulator, and use this information to limit the lines. How-
ever, this would cause the accumulator to use much more memory. Another way is to search
along the infinit lines in the edge image to find finit lines. A variant of this approach known as
the Progressive Probabilistic Hough Transform is discussed in Section 6.

4 Evaluation on Real Images

Figure 5 shows the Hough transform applied to a partly assembled pump from Grundfos. In
Figure 5d 6 true straight lines has been detected, while two detected lines does not correspond
to true straight lines. The algorithm has been “fooled” by the many ellipses in the edge map.

It is not immediately possible to avoid false detections while preserving most true detections
through tuning of the algorithm.

(a) Original (b) Edges (c) Infinite Lines (d) Finite Lines

-80 -60 -40 -20 0
6

(e) Hough Transform

20 40 60 80

Figure 5: Line detection on a real image using the Hough transformation.

5 Matlab “Implementation”

Matlab has been used to generate the images used in this worksheet. The following functions
has been used:

e hough: Performs the Hough transform on a binary edge image, and returns the accu-
mulator. The resolution of the accumulator used in this worksheet is 1 for both » and
0.

e houghpeaks: Detects lines by interpreting the accumulator. In this worksheet the thresh-
old was set to 20% of the maximum value in the accumulator, and the suppression neigh-
bourhood was set to approximately 5% of the resolution of r and 6 respectively.

e houghlines: Converts infinite lines to finite lines. In this worksheet, the minimum length
of a line was set to 30 pixels, and the algorithm was allowed to connect lines through holes
of up to 30 pixels.

6 Progressive Probabilistic Hough Transform

The Hough transform is not a fast algorithm for finding infinite lines in images of a certain size.
Since additional analysis is required to detect finite lines, this is even slower. A way to speed up
the Hough Transform and finding finite lines at the same time is the Progressive Probabilistic
Hough Transform (PPHT) [4]. The idea of this methood is to transform randomly selected
pixels in the edge image into the accumulator. When a bin in the accumulator corresponding
to a particular infinite line has got a certain number of votes, the edge image is searched along
that line to see if one or more finite line(s) are present. Then all pixels on that line are removed
from the edge image. In this way the algorithm returns finite lines. If the vote threshold is low
the number of pixels to evaluate in the accumulator gets small. The algorithm can be outlined
as follows [4]:

—_

. Create a copy (IMG?2) of the input edge image (IMG1).

2. If IMG2 is empty then finish.

3. Update the accumulator with a randomly selected pixel from IMG2.
4. Remove the pixel from IMG2.

5. If the bin with the largest value in the accumulator (BINX) that was modified is lower
than the threshold, goto point 1.

6. Search in IMG1 along a corridor specified by BINX, and find the longest segment of
pixels either continuous or exhibiting gaps not exceeding a given threshold.

7. Remove the pixels in the segment from IMG?2.

8. Clear BINX.

9. If the detected line segment is longer than a given minimum length, add it into the output
list.

10. Goto point 2

An issue with this algorithm is, that severel runs may may yield different results. This can be
the case if many lines share pixels. If two lines cross, the fist line to be detected removes the
common pixel (and a band around it) resulting in a gab in the other line. If many lines cross,
then many pixels can miss in the last lines, and the votes in the accumulator may not reach the
threshold.

In this project only a few important lines are to be detected, and the PPHT is preferred due to
its lower computational cost. We use the implementation available in openCV.

References

1]

D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. pages 714-725,
1987.

John Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-8(6):679-698, Nov. 1986.

Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect lines and
curves in pictures. Commun. ACM, 15(1):11-15, January 1972.

C. Galambos, J. Kittler, and J. Matas. Progressive probabilistic hough transform for line
detection. Computer Vision and Pattern Recognition, IEEE Computer Society Conference
on, 1:1554, 1999.

P.V.C. Hough. Method and means for recognizing complex patterns, u.s. patent 3069654.
1962.

	Introduction
	The Hough Space
	Representation of Lines in the Hough Space
	Mapping of Points to Hough Space

	Algorithm
	Transformation to Hough Space
	The Hough Space Accumulator

	Detection of Infinite Lines
	Finite Lines

	Evaluation on Real Images
	Matlab ``Implementation''
	Progressive Probabilistic Hough Transform

